3. Appendix Euler Products

Theorem 3.28 If f is multiplicative and Dy (s) is absolutely convergent at
sg € C then for all s: Res > Resg the Euler Product
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converges to Dy (s).

Proof Let N > 1 and N = {n : pjn = p < N}. By unique factorisation and
because f is multiplicative we have
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Thus, for Res > Re sqg = 0, say,
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Since we have already seen that n < N = n € N the contrapositive is
n ¢ N = n > N. Hence
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We are told that Dy (s) converges absolutely at sq, therefore
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converges. In particular the tail of this series,
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as N — oo. Hence
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converges to Dy (s) as N — oo.
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