
3. Appendix Euler Products

Theorem 3.28 If f is multiplicative and Df (s) is absolutely convergent at

s0 ∈ C then for all s : Re s > Re s0 the Euler Product
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Proof Let N > 1 and N = {n : p|n⇒ p ≤ N}. By unique factorisation and
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Thus, for Re s > Re s0 = σ0, say,
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Since we have already seen that n ≤ N ⇒ n ∈ N the contrapositive is
n /∈ N ⇒ n > N. Hence
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We are told that Df (s) converges absolutely at s0, therefore
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converges. In particular the tail of this series,
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as N →∞. Hence
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converges to Df (s) as N →∞. �
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